Solving Simple Stochastic Games with Few Random Vertices

نویسندگان

  • Hugo Gimbert
  • Florian Horn
چکیده

Simple stochastic games are two-player zero-sum stochastic games with turnbased moves, perfect information, and reachability winning conditions. We present two new algorithms computing the values of simple stochastic games. Both of them rely on the existence of optimal permutation strategies, a class of positional strategies derived from permutations of the random vertices. The “permutation-enumeration” algorithm performs an exhaustive search among these strategies, while the “permutationimprovement” algorithm is based on successive improvements, à la Hoffman-Karp. Our algorithms improve previously known algorithms in several aspects. First they run in polynomial time when the number of random vertices is fixed, so the problem of solving simple stochastic games is fixed-parameter tractable when the parameter is the number of random vertices. Furthermore, our algorithms do not require the input game to be transformed into a stopping game. Finally, the permutation-enumeration algorithm does not use linear programming, while the permutation-improvement algorithm may run in polynomial time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Stochastic Games with Few Random Vertices Are Easy to Solve

We present a new algorithm for solving Simple Stochastic Games (SSGs). This algorithm is based on an exhaustive search of a special kind of positional optimal strategies, the f-strategies. The running time is O( |VR|! · (|V ||E| + |p|) ), where |V |, |VR|, |E| and |p| are respectively the number of vertices, random vertices and edges, and the maximum bit-length of a transition probability. Our ...

متن کامل

Solving Simple Stochastic Games

We present a new algorithm for solving Simple Stochastic Games (SSGs), which is fixed parameter tractable when parametrized with the number of random vertices. This algorithm is based on an exhaustive search of a special kind of positional optimal strategies, the f-strategies. The running time is O( |VR|! · (log(|V |)|E| + |p|) ), where |V |, |VR|, |E| and |p| are respectively the number of ver...

متن کامل

New Results on Simple Stochastic Games

We study the problem of solving simple stochastic games, and give both an interesting new algorithm and a hardness result. We show a reduction from fine approximation of simple stochastic games to coarse approximation of a polynomial sized game, which can be viewed as an evidence showing the hardness to approximate the value of simple stochastic games. We also present a randomized algorithm tha...

متن کامل

Approximation Schemes for Stochastic Mean Payoff Games with Perfect Information and a Few Random Positions

We consider two-player zero-sum stochastic mean payoff games with perfect information modeled by a digraph with black, white, and random vertices. These BWR-games are polynomially equivalent with the classical Gillette games, which include many well-known subclasses, such as cyclic games, simple stochastic games, stochastic parity games, and Markov decision processes. They can also be used to m...

متن کامل

Simple Stochastic Parity Games

Many verification, planning, and control problems can be modeled as games played on state-transition graphs by one or two players whose conflicting goals are to form a path in the graph. The focus here is on simple stochastic parity games, that is, two-player games with turn-based probabilistic transitions and ω-regular objectives formalized as parity (Rabin chain) winning conditions. An effici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2007